Two new Painlevé integrable KdV–Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation

نویسندگان

چکیده

In this work, we develop two new (3+1)-dimensional KdV–Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation and negative-order KdV-CBS (nKdV-nCBS) equation. The newly developed equations pass the Painlevé integrability test via examining compatibility conditions for each model. We examine dispersion relation derive multiple soliton solutions

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum lattice KdV equation

A quantum theory is developed for a difference-difference system which can serve as a toy-model of the quantum Korteveg-de-Vries equation. Introduction This Letter presents an example of a completely integrable ‘discrete-space-time quantum model’ whose Heisenberg equations of motion have the form φ (τ, n) φ (τ, n− 1) + λ φ (τ, n− 1) φ (τ − 1, n− 1) = λ φ (τ, n) φ (τ − 1, n) + φ (τ − 1, n) φ (τ ...

متن کامل

On Discrete Painlevé Equations Associated with the Lattice Kdv Systems and the Painlevé Vi Equation

1 Abstract A new integrable nonautonomous nonlinear ordinary difference equation is presented which can be considered to be a discrete analogue of the Painlevé V equation. Its derivation is based on the similarity reduction on the two-dimensional lattice of integrable partial difference equations of KdV type. The new equation which is referred to as GDP (generalised discrete Painlevé equation) ...

متن کامل

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation

A generalized (G ′ /G)-expansion method is used to search for the exact traveling wave solutions of the coupled KdV-mKdV equation. As a result, some new Jacobi elliptic function solutions are obtained. It is shown that the method is straightforward, concise, effective, and can be used for many other nonlinear evolution equations in mathematical physics.

متن کامل

New Exact Solutions of a Variable-Coefficient KdV Equation

In this paper, we apply the Miura transformation to construct the connection between a variablecoefficient KdV (vcKdV) equation and a variable-coefficient modified KdV (vcmKdV) equation under certain constraint. Solving the vcmKdV equation by use of the auxiliary equation method and using the Miura transformation, we find a rich variety of new exact solutions for the vcKdV equation, which inclu...

متن کامل

Cellular nonlinear Networks Meet KdV equation: a New Paradigm

Abstract: The Korteweg-deVries equation, used to describe long and solitary wave propagation on shallow water, later called soliton, besides describing phenomena ranging from the dynamics of plasmas to tsunami can be implemented into Cellular Neural Networks (CNNs), analog circuit which processes signals in real time with the aim to create a completely innovative generation of trasmission lines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2021

ISSN: ['1573-269X', '0924-090X']

DOI: https://doi.org/10.1007/s11071-021-06537-6